Part 2: Privacy-aware data structure: Introduction to HyperLogLog

Workshop: Social Media, Data Science, & Cartograpy
Alexander Dunkel, Madalina Gugulica

This is the second notebook in a series of four notebooks:

  1. Introduction to Social Media data, jupyter and python spatial visualizations
  2. Introduction to privacy issues with Social Media data and possible solutions for cartographers
  3. Specific visualization techniques example: TagMaps clustering
  4. Specific data analysis: Topic Classification

Open these notebooks through the file explorer on the left side.

Introduction: Privacy & Social Media


In recent years, user privacy has become an increasingly important consideration. Particularly when working with VGI and Social Media data, analysts need to compromise between flexibility of analyses and increasing vulnerability of collected (raw) data.

There exist many possible solutions to this problem. One approach is data minimization. In a paper, we have specifically looked at options to prevent collection of original data at all, in the context of spatial data, using a data abstraction format called HyperLogLog.

Dunkel, A., Löchner, M., & Burghardt, D. (2020).
Privacy-aware visualization of volunteered geographic information (VGI) to analyze spatial activity:
A benchmark implementation.
ISPRS International Journal of Geo-Information. DOI / PDF

Beyond privacy, HyperLogLog (HLL) is a modern and fast algorithm with many advantages, which is why it is used by (e.g.) Google, Facebook and Apple to make sense of increasing data collections.

HLL in summary
  • HyperLogLog is used for estimation of the number of distinct items in a set (this is called cardinality estimation)
  • By providing only aproximate counts (with 3 to 5% inaccuracy), the overall data footprint and computing costs can be reduced significantly
  • A set with 1 Billion elements takes up only 1.5 kilobytes of memory
  • HyperLogLog Sets offer similar functionality as regular sets, such as:
    • lossless union
    • intersection
    • exclusion

Basics

Python-hll
  • Many different HLL implementations exist
  • There is a python library available
  • The library is quite slow in comparison to the Postgres HLL implementation
  • we're using python-hll for demonstration purposes herein
  • the website lbsn.vgiscience.org contains more examples that show how to use Postgres for HLL calculation in python.

Introduction to HLL sets

HyperLogLog Details
  • A HyperLogLog (HLL) Set is used for counting distinct elements in the set.
  • For HLL to work, it is necessary to first hash items
  • here, we are using MurmurHash3
  • the hash function guarantees a predictably distribution of characters in the string,
  • which is required for the probabilistic estimation of count of items

Lets first see the regular approach of creating a set in python
and counting the unique items in the set:

Regular set approach in python

In [1]:
user1 = 'foo'
user2 = 'bar'
users = {user1, user2, user2, user2}
usercount = len(users)
print(usercount)
2

HLL approach

In [2]:
from python_hll.hll import HLL
import mmh3

user1_hash = mmh3.hash(user1)
user2_hash = mmh3.hash(user2)

hll = HLL(11, 5) # log2m=11, regwidth=5

hll.add_raw(user1_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)

usercount = hll.cardinality()

print(usercount)
2
log2m=11, regwidth=5 ? These values define some of the characteristics of the HLL set, which affect (e.g.) how accurate the HLL set will be. A default register width of 5 (regwidth = 5), with a log2m of 11 allows adding a maximum number of \begin{align}1.6x10^{12}= 1600000000000\end{align} items to a single set (with a margin of cardinality error of ±2.30%)

HLL has two modes of operations that increase accuracy for small sets

  • Explicit
  • and Sparse

Repeat the process above with explicit mode turned off:

In [3]:
hll = HLL(11, 5, 0, 1) # log2m=11, regwidth=5, explicit=off, sparse=auto)
hll.add_raw(user1_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)

usercount = hll.cardinality()
print(usercount)
3

Union of two sets

At any point, we can update a hll set with new items
(which is why HLL works well in streaming contexts):

In [4]:
user3 = 'baz'
user3_hash = mmh3.hash(user3)
hll.add_raw(user3_hash)
usercount = hll.cardinality()
print(usercount)
4

.. but separate HLL sets may be created independently,
to be only merged finally for cardinality estimation:

In [5]:
hll_params = (11, 5, 0, 1)

hll1 = HLL(*hll_params)
hll2 = HLL(*hll_params)
hll3 = HLL(*hll_params)

hll1.add_raw(mmh3.hash('foo'))
hll2.add_raw(mmh3.hash('bar'))
hll3.add_raw(mmh3.hash('baz'))

hll1.union(hll2) # modifies hll1 to contain the union
hll1.union(hll3)

usercount = hll1.cardinality()
print(usercount)
4

Counting Examples: 2-Components

What is counted entirely depends on the application context. Typically, this will result in a 2-component setup with
  • the first component as a reference for the count context, e.g.:
    • coordinates, areas etc. (lat, lng)
    • terms
    • dates or times
    • groups/origins (e.g. different social networks)
  • the second component as the HLL set, for counting different metrics, e.g.
    • Post Count (PC)
    • User Count (UC)
    • User Days (PUC)

YFCC100M Example: Monitoring of Worldwide User Days

A User Day refers to a common metric used in visual analytics.

Each user is counted once per day.

This is commonly done by concatentation of a unique user identifier and the unique day of activity, e.g.:

userdays_set = set()
userday_sample = "96117893@N05" + "2012-04-14"
userdays_set.add(userday_sample)
print(len(userdays_set))
> 1

We have create an example processing pipeline for counting user days world wide, using the Flickr YFCC100M dataset, which contains about 50 Million georeferenced photos uploaded by Flickr users with a Creative Commons License.

The full processing pipeline can be viewed in a separate collection of notebooks.

In the following, we will use the HLL data to replicate these visuals.

We'll use python methods stored and loaded from modules.

Data collection granularity

There's a difference between collecting and visualizing data.

During data collection, information can be stored with a higher
information granularity, to allow some flexibility for
tuning visualizations.

In the YFCC100M Example, we "collect" data at a GeoHash granularity of 5
(about 3 km "snapping distance" for coordinates).

During data visualization, these coordinates and HLL sets are aggregated
further to a worldwide grid of 100x100 km bins.

Have a look at the data structure at data collection time.

In [6]:
from pathlib import Path

OUTPUT = Path.cwd() / "out"
OUTPUT.mkdir(exist_ok=True)
In [7]:
%load_ext autoreload
%autoreload 2
In [8]:
import sys

module_path = str(Path.cwd().parents[0] / "py")
if module_path not in sys.path:
    sys.path.append(module_path)
from modules import tools

Load the full benchmark dataset.

In [9]:
filename = "yfcc_latlng.csv"
yfcc_input_csv_path = OUTPUT / filename
if not yfcc_input_csv_path.exists():
    sample_url = tools.get_sample_url()
    yfcc_csv_url = f'{sample_url}/download?path=%2F&files={filename}'
    tools.get_stream_file(url=yfcc_csv_url, path=yfcc_input_csv_path)

Load csv data to pandas dataframe.

In [10]:
%%time
import pandas as pd
dtypes = {'latitude': float, 'longitude': float}
df = pd.read_csv(
    OUTPUT / "yfcc_latlng.csv", dtype=dtypes, encoding='utf-8')
print(len(df))
451949
CPU times: user 304 ms, sys: 51.4 ms, total: 356 ms
Wall time: 584 ms

The dataset contains a total number of 451,949 distinct coordinates,
at a GeoHash precision of 5 (~2500 Meters snapping distance.)

In [11]:
df.head()
Out[11]:
latitude longitude date_hll
0 -89.978027 -142.756348 \x138b40c722
1 -89.978027 -85.847168 \x138b40c722
2 -89.978027 -83.518066 \x138b40c722
3 -89.978027 -50.910645 \x138b40c722
4 -89.978027 -49.855957 \x138b40c722

Calculate a single HLL cardinality (first row):

In [12]:
sample_hll_set = df.loc[0, "date_hll"]
In [13]:
from python_hll.util import NumberUtil
hex_string = sample_hll_set[2:]
print(sample_hll_set[2:])
hll = HLL.from_bytes(NumberUtil.from_hex(hex_string, 0, len(hex_string)))
138b40c722
In [14]:
hll.cardinality()
Out[14]:
2

The two components of the structure are highlighted below.

In [15]:
tools.display_header_stats(
    df.head(),
    base_cols=["latitude", "longitude"],
    metric_cols=["date_hll"])
latitude longitude date_hll
0 -89.978027 -142.756348 \x138b40c722
1 -89.978027 -85.847168 \x138b40c722
2 -89.978027 -83.518066 \x138b40c722
3 -89.978027 -50.910645 \x138b40c722
4 -89.978027 -49.855957 \x138b40c722

The color refers to the two components:

1 - The (spatial) context for HLL sets (called the 'base' in lbsn structure)
2 - The HLL set (called the 'overlay')

Data visualization granularity

  • there're many ways to visualize data
  • typically, visualizations will present
    information at a information granularity
    that is suited for the specific application
    context
  • To aggregate information from HLL data,
    individual HLL sets need to be merged
    (a union operation)
  • For the YFCC100M Example, the process
    to union HLL sets is shown here
  • We're going to load and visualize this
    aggregate data below
In [16]:
from modules import yfcc
In [17]:
filename = "yfcc_all_est_benchmark.csv"
yfcc_benchmark_csv_path = OUTPUT / filename
if not yfcc_benchmark_csv_path.exists():
    yfcc_csv_url = f'{sample_url}/download?path=%2F&files={filename}'
    tools.get_stream_file(
        url=yfcc_csv_url, path=yfcc_benchmark_csv_path)
In [18]:
grid = yfcc.grid_agg_fromcsv(
    OUTPUT / filename,
    columns=["xbin", "ybin", "userdays_hll"])
In [19]:
grid[grid["userdays_hll"].notna()].head()
Out[19]:
geometry userdays_hll
xbin ybin
-18040096 79952 POLYGON ((-18040096.000 79952.000, -17940096.0... \x138b400ae459a171e19bc2a242a841b322
-17640096 -2020048 POLYGON ((-17640096.000 -2020048.000, -1754009... \x138b4008220f4115a12a212ac131a432a1370141e247...
-17540096 -1720048 POLYGON ((-17540096.000 -1720048.000, -1744009... \x138b407221
-2020048 POLYGON ((-17540096.000 -2020048.000, -1744009... \x138b400661170230e138634b624c216d8174217fe38a...
-2120048 POLYGON ((-17540096.000 -2120048.000, -1744009... \x138b40c301
In [20]:
tools.display_header_stats(
    grid[grid["userdays_hll"].notna()].head(),
    base_cols=["geometry"],
    metric_cols=["userdays_hll"])
geometry userdays_hll
xbin ybin
-18040096 79952 POLYGON ((-18040096 79952, -17940096 79952, -17940096 -20048, -18040096 -20048, -18040096 79952)) \x138b400ae459a171e19bc2a
-17640096 -2020048 POLYGON ((-17640096 -2020048, -17540096 -2020048, -17540096 -2120048, -17640096 -2120048, -17640096 -2020048)) \x138b4008220f4115a12a212
-17540096 -1720048 POLYGON ((-17540096 -1720048, -17440096 -1720048, -17440096 -1820048, -17540096 -1820048, -17540096 -1720048)) \x138b407221
-2020048 POLYGON ((-17540096 -2020048, -17440096 -2020048, -17440096 -2120048, -17540096 -2120048, -17540096 -2020048)) \x138b400661170230e138634
-2120048 POLYGON ((-17540096 -2120048, -17440096 -2120048, -17440096 -2220048, -17540096 -2220048, -17540096 -2120048)) \x138b40c301

Calculate the cardinality for all bins and store in extra column:

In [21]:
def hll_from_byte(hll_set: str):
    """Return HLL set from binary representation"""
    hex_string = hll_set[2:]
    return HLL.from_bytes(
        NumberUtil.from_hex(
            hex_string, 0, len(hex_string)))
In [22]:
def cardinality_from_hll(hll_set):
    """Turn binary hll into HLL set and return cardinality"""
    hll = hll_from_byte(hll_set)
    return hll.cardinality() - 1

Calculate cardinality for all bins.

This process will take some time (about 3 Minutes),
due to using slow python-hll implementation.

In [23]:
%%time
mask = grid["userdays_hll"].notna()
grid["userdays_est"] = 0
grid.loc[mask, 'userdays_est'] = grid[mask].apply(
        lambda x: cardinality_from_hll(
           x["userdays_hll"]),
        axis=1)
/opt/conda/envs/worker_env/lib/python3.9/site-packages/python_hll/util.py:289: RuntimeWarning: overflow encountered in long_scalars
  self._words[first_word_index] &= BitUtil.left_shift_long(1, bit_remainder) - 1
CPU times: user 5min 40s, sys: 0 ns, total: 5min 40s
Wall time: 5min 40s
RuntimeWarning?
grid[mask].apply()?
  • This is another example of boolean masking with pandas
  • grid["userdays_hll"].notna() creates a list (a pd.Series) of True/False values
  • grid.loc[mask, 'userdays_est'] uses the index of the mask, to select indexes, and the column 'userdays_est', to assign values

From now on, disable warnings:

In [24]:
import warnings 
warnings.filterwarnings('ignore')

Have a look at the cardinality below.

In [25]:
grid[grid["userdays_hll"].notna()].head()
Out[25]:
geometry userdays_hll userdays_est
xbin ybin
-18040096 79952 POLYGON ((-18040096.000 79952.000, -17940096.0... \x138b400ae459a171e19bc2a242a841b322 7
-17640096 -2020048 POLYGON ((-17640096.000 -2020048.000, -1754009... \x138b4008220f4115a12a212ac131a432a1370141e247... 68
-17540096 -1720048 POLYGON ((-17540096.000 -1720048.000, -1744009... \x138b407221 1
-2020048 POLYGON ((-17540096.000 -2020048.000, -1744009... \x138b400661170230e138634b624c216d8174217fe38a... 11
-2120048 POLYGON ((-17540096.000 -2120048.000, -1744009... \x138b40c301 1

Visualize the grid, using prepared methods

Activate the bokeh holoviews extension.

In [26]:
from modules import grid as yfcc_grid
import holoviews as hv
hv.notebook_extension('bokeh')

.. visualize the grid, as an interactive map, shown in the notebook:

In [27]:
gv_layers = yfcc_grid.plot_interactive(
    grid, title=f'YFCC User Days (estimated) per 100 km grid',
    metric="userdays_est")
In [28]:
gv_layers
Out[28]:

.. or, store as an external HTML file, to be viewed separately:

In [29]:
yfcc_grid.plot_interactive(
    grid, title=f'YFCC User Days (estimated) per 100 km grid', metric="userdays_est",
    store_html="yfcc_userdays_est", output=OUTPUT)

Working with HLL data: Intersection Example

HLL is not pure statistic data.

There is some flexibility to explore HLL sets further,
by using the union and intersection functionality.

We're going to explore this functionality below.

The task is to union all HLL sets for userdays for:

  • Germany
  • France
  • UK

.. and finally visualizing total user counts for these countries
and the subset of users that have visited two or all of these countries.

Load user hll sets:

In [30]:
grid = yfcc.grid_agg_fromcsv(
    OUTPUT / "yfcc_all_est_benchmark.csv",
    columns=["xbin", "ybin", "usercount_hll"])

Preview:

In [31]:
grid[grid["usercount_hll"].notna()].head()
Out[31]:
geometry usercount_hll
xbin ybin
-18040096 79952 POLYGON ((-18040096.000 79952.000, -17940096.0... \x138b401ac2d3a2
-17640096 -2020048 POLYGON ((-17640096.000 -2020048.000, -1754009... \x138b4000a208c3100211c314e1176118012be4450357...
-17540096 -1720048 POLYGON ((-17540096.000 -1720048.000, -1744009... \x138b401822
-2020048 POLYGON ((-17540096.000 -2020048.000, -1744009... \x138b401002b843
-2120048 POLYGON ((-17540096.000 -2120048.000, -1744009... \x138b4054e1

Union hll sets for Countries UK, DE and FR

Selection of grid cells based on country geometry

Load country geometry:

In [32]:
import geopandas as gp
world = gp.read_file(
    gp.datasets.get_path('naturalearth_lowres'),
    crs=yfcc.CRS_WGS)
world = world.to_crs(
    yfcc.CRS_PROJ)
gp.datasets.get_path()?
  • Some data is provided by Geopandas
  • One of these datasets is the natural earth lowres countries shapefile
  • .. but you can load any Shapefile or GIS data here.

Select geometry for DE, FR and UK

In [33]:
de = world[world['name'] == "Germany"]
uk = world[world['name'] == "United Kingdom"]
fr = world[world['name'] == "France"]

Drop French territory of French Guiana:

In [34]:
fr = fr.explode().iloc[1:].dissolve(by='name')
fr.plot()
Out[34]:
<AxesSubplot:>

Preview selection.

Note that the territory of France includes Corsica,
which is acceptable for the example use case.

In [35]:
import matplotlib.pyplot as plt
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig.suptitle(
    'Areas to test for common visitors in the hll benchmark dataset')
for ax in (ax1, ax2, ax3):
    ax.set_axis_off()
ax1.title.set_text('DE')
ax2.title.set_text('UK')
ax3.title.set_text('FR')
de.plot(ax=ax1)
uk.plot(ax=ax2)
fr.plot(ax=ax3)
Out[35]:
<AxesSubplot:title={'center':'FR'}>

Intersection with grid

Since grid size is 100 km, direct intersection will yield some error rate (in this case, called _MAUP_).
Use centroid of grid cells to select bins based on country geometry.

Get centroids as Geoseries and turn into GeoDataFrame:

In [36]:
centroid_grid = grid.centroid.reset_index()
centroid_grid.set_index(["xbin", "ybin"], inplace=True)
In [37]:
grid.centroid
Out[37]:
xbin       ybin    
-18040096   8979952    POINT (-17990096.000 8929952.000)
            8879952    POINT (-17990096.000 8829952.000)
            8779952    POINT (-17990096.000 8729952.000)
            8679952    POINT (-17990096.000 8629952.000)
            8579952    POINT (-17990096.000 8529952.000)
                                     ...                
 17959904  -8620048    POINT (18009904.000 -8670048.000)
           -8720048    POINT (18009904.000 -8770048.000)
           -8820048    POINT (18009904.000 -8870048.000)
           -8920048    POINT (18009904.000 -8970048.000)
           -9020048    POINT (18009904.000 -9070048.000)
Length: 65341, dtype: geometry

Define function to intersection, using geopandas sjoin (spatial join)

In [38]:
from geopandas.tools import sjoin
def intersect_grid_centroids(
    grid: gp.GeoDataFrame, 
    intersect_gdf: gp.GeoDataFrame):
    """Return grid centroids from grid that 
    intersect with intersect_gdf
    """
    centroid_grid = gp.GeoDataFrame(
        grid.centroid)
    centroid_grid.rename(
        columns={0:'geometry'},
        inplace=True)
    centroid_grid.set_geometry(
        'geometry', crs=grid.crs, 
        inplace=True)
    grid_intersect = sjoin(
        centroid_grid, intersect_gdf, 
        how='right')
    grid_intersect.set_index(
        ["index_left0", "index_left1"],
        inplace=True)
    grid_intersect.index.names = ['xbin','ybin']
    return grid.loc[grid_intersect.index]

Run intersection for countries:

In [39]:
grid_de = intersect_grid_centroids(
    grid=grid, intersect_gdf=de)
grid_de.plot(edgecolor='white')
Out[39]:
<AxesSubplot:>
In [40]:
grid_fr = intersect_grid_centroids(
    grid=grid, intersect_gdf=fr)
grid_fr.plot(edgecolor='white')
Out[40]:
<AxesSubplot:>
In [41]:
grid_uk = intersect_grid_centroids(
    grid=grid, intersect_gdf=uk)
grid_uk.plot(edgecolor='white')
Out[41]:
<AxesSubplot:>

Plot preview of selected grid cells (bins)

Define colors:

In [42]:
color_de = "#fc4f30"
color_fr = "#008fd5"
color_uk = "#6d904f"

Define map boundary:

In [43]:
bbox_europe = (
    -9.580078, 41.571384,
    16.611328, 59.714117)
minx, miny = yfcc.PROJ_TRANSFORMER.transform(
    bbox_europe[0], bbox_europe[1])
maxx, maxy = yfcc.PROJ_TRANSFORMER.transform(
    bbox_europe[2], bbox_europe[3])
buf = 100000
In [44]:
from typing import List, Optional
def plot_map(
    grid: gp.GeoDataFrame, sel_grids: List[gp.GeoDataFrame],
    sel_colors: List[str],
    title: Optional[str] = None, save_fig: Optional[str] = None,
    ax = None, output: Optional[Path] = OUTPUT):
    """Plot GeoDataFrame with matplotlib backend, optionaly export as png"""
    if not ax:
        fig, ax = plt.subplots(1, 1, figsize=(5, 6))
    ax.set_xlim(minx-buf, maxx+buf)
    ax.set_ylim(miny-buf, maxy+buf)
    if title:
        ax.set_title(title, fontsize=12)
    for ix, sel_grid in enumerate(sel_grids):
        sel_grid.plot(
            ax=ax,
            color=sel_colors[ix],
            edgecolor='white',
            alpha=0.9)
    grid.boundary.plot(
        ax=ax,
        edgecolor='black', 
        linewidth=0.1,
        alpha=0.9)
    # combine with world geometry
    world.plot(
        ax=ax, color='none', edgecolor='black', linewidth=0.3)
    # turn axis off
    ax.set_axis_off()
    if not save_fig:
        return
    fig.savefig(output / save_fig, dpi=300, format='PNG',
               bbox_inches='tight', pad_inches=1)
In [45]:
sel_grids=[grid_de, grid_uk, grid_fr]
sel_colors=[color_de, color_uk, color_fr]
plot_map(
    grid=grid, sel_grids=sel_grids, 
    sel_colors=sel_colors,
    title='Grid selection for DE, FR and UK',
    save_fig='grid_selection_countries.png')

Union of hll sets

In [46]:
def union_hll(hll: HLL, hll2):
    """Union of two HLL sets. The first HLL set will be modified in-place."""
    hll.union(hll2)
    
def union_all_hll(
    hll_series: pd.Series, cardinality: bool = True) -> pd.Series:
    """HLL Union and (optional) cardinality estimation from series of hll sets

        Args:
        hll_series: Indexed series (bins) of hll sets. 
        cardinality: If True, returns cardinality (counts). Otherwise,
            the unioned hll set will be returned.
    """
    
    hll_set = None
    for hll_set_str in hll_series.values.tolist():
        if hll_set is None:
            # set first hll set
            hll_set = hll_from_byte(hll_set_str)
            continue
        hll_set2 = hll_from_byte(hll_set_str)
        union_hll(hll_set, hll_set2)
    return hll_set.cardinality()

Calculate distinct users per country:

In [47]:
grid_sel = {
    "de": grid_de,
    "uk": grid_uk,
    "fr": grid_fr
}
distinct_users_total = {}
for country, grid_sel in grid_sel.items():
    # drop bins with no values
    cardinality_total = union_all_hll(
        grid_sel["usercount_hll"].dropna())
    distinct_users_total[country] = cardinality_total
    print(
        f"{distinct_users_total[country]} distinct users "
        f"who shared YFCC100M photos in {country.upper()}")
24318 distinct users who shared YFCC100M photos in DE
31290 distinct users who shared YFCC100M photos in UK
24948 distinct users who shared YFCC100M photos in FR

Calculate intersection (common visitors)

According to the Union-intersection-principle:

$|A \cup B| = |A| + |B| - |A \cap B|$

which can also be written as:

$|A \cap B| = |A| + |B| - |A \cup B|$

Therefore, unions can be used to calculate intersection. Calculate $|DE \cup FR|$, $|DE \cup UK|$ and $|UK \cup FR|$, i.e.:

IntersectionCount = 
hll_cardinality(grid_de)::int +
hll_cardinality(grid_fr)::int - 
hll_cardinality(hll_union(grid_de, grid_fr)

First, prepare combination for different sets.

In [48]:
union_de_fr = pd.concat([grid_de, grid_fr])
union_de_uk = pd.concat([grid_de, grid_uk])
union_uk_fr = pd.concat([grid_uk, grid_fr])

Calculate union

In [49]:
grid_sel = {
    "de-uk": union_de_uk,
    "de-fr": union_de_fr,
    "uk-fr": union_uk_fr
}
distinct_common = {}
for country_tuple, grid_sel in grid_sel.items():
    cardinality = union_all_hll(
        grid_sel["usercount_hll"].dropna())
    distinct_common[country_tuple] = cardinality
    print(
        f"{distinct_common[country_tuple]} distinct total users "
        f"who shared YFCC100M photos from either {country_tuple.split('-')[0]} "
        f"or {country_tuple.split('-')[1]} (union)")
50016 distinct total users who shared YFCC100M photos from either de or uk (union)
42880 distinct total users who shared YFCC100M photos from either de or fr (union)
48496 distinct total users who shared YFCC100M photos from either uk or fr (union)

Calculate intersection

In [50]:
distinct_intersection = {}
for a, b in [("de", "uk"), ("de", "fr"), ("uk", "fr")]:
    a_total = distinct_users_total[a]
    b_total = distinct_users_total[b]
    common_ref = f'{a}-{b}'
    intersection_count = a_total + b_total - distinct_common[common_ref]
    distinct_intersection[common_ref] = intersection_count
    print(
        f"{distinct_intersection[common_ref]} distinct users "
        f"who shared YFCC100M photos from {a} and {b} (intersection)")
5592 distinct users who shared YFCC100M photos from de and uk (intersection)
6386 distinct users who shared YFCC100M photos from de and fr (intersection)
7742 distinct users who shared YFCC100M photos from uk and fr (intersection)

Finally, lets get the number of users who have shared pictures from all three countries, based on the formula for three sets:

$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

which can also be written as:

$|A \cap B \cap C| = |A \cup B \cup C| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C|$

Calculate distinct users of all three countries:

In [51]:
union_de_fr_uk = pd.concat(
    [grid_de, grid_fr, grid_uk])
cardinality = union_all_hll(
    union_de_fr_uk["usercount_hll"].dropna())
union_count_all = cardinality
union_count_all
Out[51]:
63613
In [52]:
country_a = "de"
country_b = "uk"
country_c = "fr"

Calculate intersection

In [53]:
intersection_count_all = union_count_all - \
    distinct_users_total[country_a] - \
    distinct_users_total[country_b] - \
    distinct_users_total[country_c] + \
    distinct_intersection[f'{country_a}-{country_b}'] + \
    distinct_intersection[f'{country_a}-{country_c}'] + \
    distinct_intersection[f'{country_b}-{country_c}']
    
print(intersection_count_all)
2777

Visualize intersection using Venn diagram

Since we're going to visualize this with matplotlib-venn, we need the following variables:

In [54]:
from matplotlib_venn import venn3, venn3_circles
v = venn3(
    subsets=(
        500,
        500, 
        100,
        500,
        100,
        100,
        10),
    set_labels = ('A', 'B', 'C'))
v.get_label_by_id('100').set_text('Abc')
v.get_label_by_id('010').set_text('aBc')
v.get_label_by_id('001').set_text('abC')
v.get_label_by_id('110').set_text('ABc')
v.get_label_by_id('101').set_text('AbC')
v.get_label_by_id('011').set_text('aBC')
v.get_label_by_id('111').set_text('ABC')
plt.show()

We already have ABC, the other values can be calulated:

In [55]:
ABC = intersection_count_all
In [56]:
ABc = distinct_intersection[f'{country_a}-{country_b}'] - ABC
In [57]:
aBC = distinct_intersection[f'{country_b}-{country_c}'] - ABC
In [58]:
AbC = distinct_intersection[f'{country_a}-{country_c}'] - ABC
In [59]:
Abc = distinct_users_total[country_a] - ABc - AbC + ABC
In [60]:
aBc = distinct_users_total[country_b] - ABc - aBC + ABC
In [61]:
abC = distinct_users_total[country_c] - aBC - AbC + ABC

Illustrate intersection (Venn diagram)

Order of values handed over: Abc, aBc, ABc, abC, AbC, aBC, ABC

Define Function to plot Venn Diagram.

In [62]:
from typing import Tuple

def plot_venn(
    subset_sizes: List[int],
    colors: List[str], 
    names: List[str],
    subset_sizes_raw: List[int] = None,
    total_sizes: List[Tuple[int, int]] = None,
    ax = None,
    title: str = None):
    """Plot Venn Diagram"""
    if not ax:
        fig, ax = plt.subplots(1, 1, figsize=(5,5))
    set_labels = (
        'A', 'B', 'C')
    v = venn3(
        subsets=(
            [subset_size for subset_size in subset_sizes]),
        set_labels = set_labels,
        ax=ax)    
    for ix, idx in enumerate(
        ['100', '010', '001']):
        v.get_patch_by_id(
            idx).set_color(colors[ix])
        v.get_patch_by_id(
            idx).set_alpha(0.8)
        v.get_label_by_id(
            set_labels[ix]).set_text(
            names[ix])
        if not total_sizes:
            continue
        raw_count = total_sizes[ix][0]
        hll_count = total_sizes[ix][1]
        difference = abs(raw_count-hll_count)
        v.get_label_by_id(set_labels[ix]).set_text(
            f'{names[ix]}, {hll_count},\n'
            f'{difference/(raw_count/100):+.1f}%')
    if subset_sizes_raw:
        for ix, idx in enumerate(
            ['100', '010', None, '001']):
            if not idx:
                continue
            dif_abs = subset_sizes[ix] - subset_sizes_raw[ix]
            dif_perc = dif_abs / (subset_sizes_raw[ix] / 100)
            v.get_label_by_id(idx).set_text(
                f'{subset_sizes[ix]}\n{dif_perc:+.1f}%')            
    label_ids = [
        '100', '010', '001',
        '110', '101', '011',
        '111', 'A', 'B', 'C']
    for label_id in label_ids:
        v.get_label_by_id(
            label_id).set_fontsize(14)
    # draw borders
    c = venn3_circles(
        subsets=(
            [subset_size for subset_size in subset_sizes]),
        linestyle='dashed',
        lw=1,
        ax=ax)
    if title:
        ax.title.set_text(title)

Plot Venn Diagram:

In [63]:
subset_sizes = [
    Abc, aBc, ABc, abC, AbC, aBC, ABC]
colors = [
    color_de, color_uk, color_fr]
names = [
    'Germany', 'United Kingdom','France']
plot_venn(
    subset_sizes=subset_sizes,
    colors=colors,
    names=names,
    title="Common User Count")

Combine Map & Venn Diagram

In [64]:
# figure with subplot (1 row, 2 columns)
fig, ax = plt.subplots(1, 2, figsize=(10, 24))
plot_map(
    grid=grid, sel_grids=sel_grids, 
    sel_colors=sel_colors, ax=ax[0])
plot_venn(
    subset_sizes=subset_sizes,
    colors=colors,
    names=names,
    ax=ax[1])
# store as png
fig.savefig(
    OUTPUT / "hll_intersection_ukdefr.png", dpi=300, format='PNG',
    bbox_inches='tight', pad_inches=1)

Create Notebook HTML

Save the Notebook, then execute the following cell to convert to HTML (archive format).

In [66]:
!jupyter nbconvert --to html \
    --output-dir=./out/ ./02_hll_intro.ipynb \
    --template=../nbconvert.tpl \
    --ExtractOutputPreprocessor.enabled=False >&- 2>&-

Summary

In [ ]: