Workshop: Social Media, Data Science, & Cartograpy
Alexander Dunkel, Madalina Gugulica
This is the second notebook in a series of four notebooks:
Open these notebooks through the file explorer on the left side.
Dunkel, A., Löchner, M., & Burghardt, D. (2020).
Privacy-aware visualization of volunteered geographic information (VGI) to analyze spatial activity:
A benchmark implementation. ISPRS International Journal of Geo-Information. DOI / PDF
set
(this is called cardinality estimation)Lets first see the regular approach of creating a set in python
and counting the unique items in the set:
Regular set approach in python
user1 = 'foo'
user2 = 'bar'
users = {user1, user2, user2, user2}
usercount = len(users)
print(usercount)
HLL approach
from python_hll.hll import HLL
import mmh3
user1_hash = mmh3.hash(user1)
user2_hash = mmh3.hash(user2)
hll = HLL(11, 5) # log2m=11, regwidth=5
hll.add_raw(user1_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
usercount = hll.cardinality()
print(usercount)
HLL has two modes of operations that increase accuracy for small sets
Because Explicit mode stores Hashes fully, it cannot provide any benefits for privacy, which is why it should be disabled.
Repeat the process above with explicit mode turned off:
hll = HLL(11, 5, 0, 1) # log2m=11, regwidth=5, explicit=off, sparse=auto)
hll.add_raw(user1_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
hll.add_raw(user2_hash)
usercount = hll.cardinality()
print(usercount)
Union of two sets
At any point, we can update a hll set with new items
(which is why HLL works well in streaming contexts):
user3 = 'baz'
user3_hash = mmh3.hash(user3)
hll.add_raw(user3_hash)
usercount = hll.cardinality()
print(usercount)
.. but separate HLL sets may be created independently,
to be only merged finally for cardinality estimation:
hll_params = (11, 5, 0, 1)
hll1 = HLL(*hll_params)
hll2 = HLL(*hll_params)
hll3 = HLL(*hll_params)
hll1.add_raw(mmh3.hash('foo'))
hll2.add_raw(mmh3.hash('bar'))
hll3.add_raw(mmh3.hash('baz'))
hll1.union(hll2) # modifies hll1 to contain the union
hll1.union(hll3)
usercount = hll1.cardinality()
print(usercount)
A User Day refers to a common metric used in visual analytics.
Each user is counted once per day.
This is commonly done by concatentation of a unique user identifier and the unique day of activity, e.g.:
userdays_set = set()
userday_sample = "96117893@N05" + "2012-04-14"
userdays_set.add(userday_sample)
print(len(userdays_set))
> 1
We have create an example processing pipeline for counting user days world wide, using the Flickr YFCC100M dataset, which contains about 50 Million georeferenced photos uploaded by Flickr users with a Creative Commons License.
The full processing pipeline can be viewed in a separate collection of notebooks.
In the following, we will use the HLL data to replicate these visuals.
We'll use python methods stored and loaded from modules.
There's a difference between collecting and visualizing data.
During data collection, information can be stored with a higher
information granularity, to allow some flexibility for
tuning visualizations.
In the YFCC100M Example, we "collect" data at a GeoHash granularity of 5
(about 3 km "snapping distance" for coordinates).
During data visualization, these coordinates and HLL sets are aggregated
further to a worldwide grid of 100x100 km bins.
Have a look at the data structure at data collection time.
from pathlib import Path
OUTPUT = Path.cwd() / "out"
OUTPUT.mkdir(exist_ok=True)
%load_ext autoreload
%autoreload 2
import sys
module_path = str(Path.cwd().parents[0] / "py")
if module_path not in sys.path:
sys.path.append(module_path)
from modules import tools
Load the full benchmark dataset.
filename = "yfcc_latlng.csv"
yfcc_input_csv_path = OUTPUT / filename
if not yfcc_input_csv_path.exists():
sample_url = tools.get_sample_url()
yfcc_csv_url = f'{sample_url}/download?path=%2F&files={filename}'
tools.get_stream_file(url=yfcc_csv_url, path=yfcc_input_csv_path)
Load csv data to pandas dataframe.
%%time
import pandas as pd
dtypes = {'latitude': float, 'longitude': float}
df = pd.read_csv(
OUTPUT / "yfcc_latlng.csv", dtype=dtypes, encoding='utf-8')
print(len(df))
The dataset contains a total number of 451,949 distinct coordinates,
at a GeoHash precision of 5 (~2500 Meters snapping distance.)
df.head()
Calculate a single HLL cardinality (first row):
sample_hll_set = df.loc[0, "date_hll"]
from python_hll.util import NumberUtil
hex_string = sample_hll_set[2:]
print(sample_hll_set[2:])
hll = HLL.from_bytes(NumberUtil.from_hex(hex_string, 0, len(hex_string)))
hll.cardinality()
The two components of the structure are highlighted below.
tools.display_header_stats(
df.head(),
base_cols=["latitude", "longitude"],
metric_cols=["date_hll"])
The color refers to the two components:
from modules import yfcc
filename = "yfcc_all_est_benchmark.csv"
yfcc_benchmark_csv_path = OUTPUT / filename
if not yfcc_benchmark_csv_path.exists():
yfcc_csv_url = f'{sample_url}/download?path=%2F&files={filename}'
tools.get_stream_file(
url=yfcc_csv_url, path=yfcc_benchmark_csv_path)
grid = yfcc.grid_agg_fromcsv(
OUTPUT / filename,
columns=["xbin", "ybin", "userdays_hll"])
grid[grid["userdays_hll"].notna()].head()
tools.display_header_stats(
grid[grid["userdays_hll"].notna()].head(),
base_cols=["geometry"],
metric_cols=["userdays_hll"])
Calculate the cardinality for all bins and store in extra column:
def hll_from_byte(hll_set: str):
"""Return HLL set from binary representation"""
hex_string = hll_set[2:]
return HLL.from_bytes(
NumberUtil.from_hex(
hex_string, 0, len(hex_string)))
def cardinality_from_hll(hll_set):
"""Turn binary hll into HLL set and return cardinality"""
hll = hll_from_byte(hll_set)
return hll.cardinality() - 1
Calculate cardinality for all bins.
This process will take some time (about 3 Minutes),
due to using slow python-hll implementation.
%%time
mask = grid["userdays_hll"].notna()
grid["userdays_est"] = 0
grid.loc[mask, 'userdays_est'] = grid[mask].apply(
lambda x: cardinality_from_hll(
x["userdays_hll"]),
axis=1)
grid[mask].apply()
?grid["userdays_hll"].notna()
creates a list (a pd.Series
) of True/False valuesgrid.loc[mask, 'userdays_est']
uses the index of the mask, to select indexes, and the column 'userdays_est', to assign valuesFrom now on, disable warnings:
import warnings
warnings.filterwarnings('ignore')
Have a look at the cardinality below.
grid[grid["userdays_hll"].notna()].head()
Activate the bokeh holoviews extension.
from modules import grid as yfcc_grid
import holoviews as hv
hv.notebook_extension('bokeh')
.. visualize the grid, as an interactive map, shown in the notebook:
gv_layers = yfcc_grid.plot_interactive(
grid, title=f'YFCC User Days (estimated) per 100 km grid',
metric="userdays_est")
gv_layers
.. or, store as an external HTML file, to be viewed separately:
yfcc_grid.plot_interactive(
grid, title=f'YFCC User Days (estimated) per 100 km grid', metric="userdays_est",
store_html="yfcc_userdays_est", output=OUTPUT)
HLL is not pure statistic data.
There is some flexibility to explore HLL sets further,
by using the union and intersection functionality.
We're going to explore this functionality below.
The task is to union all HLL sets for userdays for:
.. and finally visualizing total user counts for these countries
and the subset of users that have visited two or all of these
countries.
user-id||date
) are not suited to study visitation intersection between countries.Load user hll sets:
grid = yfcc.grid_agg_fromcsv(
OUTPUT / "yfcc_all_est_benchmark.csv",
columns=["xbin", "ybin", "usercount_hll"])
Preview:
grid[grid["usercount_hll"].notna()].head()
Load country geometry:
import geopandas as gp
world = gp.read_file(
gp.datasets.get_path('naturalearth_lowres'),
crs=yfcc.CRS_WGS)
world = world.to_crs(
yfcc.CRS_PROJ)
gp.datasets.get_path()
?Select geometry for DE, FR and UK
de = world[world['name'] == "Germany"]
uk = world[world['name'] == "United Kingdom"]
fr = world[world['name'] == "France"]
Drop French territory of French Guiana:
fr = fr.explode().iloc[1:].dissolve(by='name')
fr.plot()
Preview selection.
Note that the territory of France includes Corsica,
which is acceptable for the example use case.
import matplotlib.pyplot as plt
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
fig.suptitle(
'Areas to test for common visitors in the hll benchmark dataset')
for ax in (ax1, ax2, ax3):
ax.set_axis_off()
ax1.title.set_text('DE')
ax2.title.set_text('UK')
ax3.title.set_text('FR')
de.plot(ax=ax1)
uk.plot(ax=ax2)
fr.plot(ax=ax3)
Since grid size is 100 km,
direct intersection will yield some error rate (in this case, called _MAUP_).
Use centroid of grid cells to select bins based on country geometry.
Get centroids as Geoseries and turn into GeoDataFrame:
centroid_grid = grid.centroid.reset_index()
centroid_grid.set_index(["xbin", "ybin"], inplace=True)
grid.centroid
Define function to intersection, using geopandas sjoin (spatial join)
from geopandas.tools import sjoin
def intersect_grid_centroids(
grid: gp.GeoDataFrame,
intersect_gdf: gp.GeoDataFrame):
"""Return grid centroids from grid that
intersect with intersect_gdf
"""
centroid_grid = gp.GeoDataFrame(
grid.centroid)
centroid_grid.rename(
columns={0:'geometry'},
inplace=True)
centroid_grid.set_geometry(
'geometry', crs=grid.crs,
inplace=True)
grid_intersect = sjoin(
centroid_grid, intersect_gdf,
how='right')
grid_intersect.set_index(
["index_left0", "index_left1"],
inplace=True)
grid_intersect.index.names = ['xbin','ybin']
return grid.loc[grid_intersect.index]
Run intersection for countries:
grid_de = intersect_grid_centroids(
grid=grid, intersect_gdf=de)
grid_de.plot(edgecolor='white')
grid_fr = intersect_grid_centroids(
grid=grid, intersect_gdf=fr)
grid_fr.plot(edgecolor='white')
grid_uk = intersect_grid_centroids(
grid=grid, intersect_gdf=uk)
grid_uk.plot(edgecolor='white')
Define colors:
color_de = "#fc4f30"
color_fr = "#008fd5"
color_uk = "#6d904f"
Define map boundary:
bbox_europe = (
-9.580078, 41.571384,
16.611328, 59.714117)
minx, miny = yfcc.PROJ_TRANSFORMER.transform(
bbox_europe[0], bbox_europe[1])
maxx, maxy = yfcc.PROJ_TRANSFORMER.transform(
bbox_europe[2], bbox_europe[3])
buf = 100000
from typing import List, Optional
def plot_map(
grid: gp.GeoDataFrame, sel_grids: List[gp.GeoDataFrame],
sel_colors: List[str],
title: Optional[str] = None, save_fig: Optional[str] = None,
ax = None, output: Optional[Path] = OUTPUT):
"""Plot GeoDataFrame with matplotlib backend, optionaly export as png"""
if not ax:
fig, ax = plt.subplots(1, 1, figsize=(5, 6))
ax.set_xlim(minx-buf, maxx+buf)
ax.set_ylim(miny-buf, maxy+buf)
if title:
ax.set_title(title, fontsize=12)
for ix, sel_grid in enumerate(sel_grids):
sel_grid.plot(
ax=ax,
color=sel_colors[ix],
edgecolor='white',
alpha=0.9)
grid.boundary.plot(
ax=ax,
edgecolor='black',
linewidth=0.1,
alpha=0.9)
# combine with world geometry
world.plot(
ax=ax, color='none', edgecolor='black', linewidth=0.3)
# turn axis off
ax.set_axis_off()
if not save_fig:
return
fig.savefig(output / save_fig, dpi=300, format='PNG',
bbox_inches='tight', pad_inches=1)
sel_grids=[grid_de, grid_uk, grid_fr]
sel_colors=[color_de, color_uk, color_fr]
plot_map(
grid=grid, sel_grids=sel_grids,
sel_colors=sel_colors,
title='Grid selection for DE, FR and UK',
save_fig='grid_selection_countries.png')
def union_hll(hll: HLL, hll2):
"""Union of two HLL sets. The first HLL set will be modified in-place."""
hll.union(hll2)
def union_all_hll(
hll_series: pd.Series, cardinality: bool = True) -> pd.Series:
"""HLL Union and (optional) cardinality estimation from series of hll sets
Args:
hll_series: Indexed series (bins) of hll sets.
cardinality: If True, returns cardinality (counts). Otherwise,
the unioned hll set will be returned.
"""
hll_set = None
for hll_set_str in hll_series.values.tolist():
if hll_set is None:
# set first hll set
hll_set = hll_from_byte(hll_set_str)
continue
hll_set2 = hll_from_byte(hll_set_str)
union_hll(hll_set, hll_set2)
return hll_set.cardinality()
Calculate distinct users per country:
grid_sel = {
"de": grid_de,
"uk": grid_uk,
"fr": grid_fr
}
distinct_users_total = {}
for country, grid_sel in grid_sel.items():
# drop bins with no values
cardinality_total = union_all_hll(
grid_sel["usercount_hll"].dropna())
distinct_users_total[country] = cardinality_total
print(
f"{distinct_users_total[country]} distinct users "
f"who shared YFCC100M photos in {country.upper()}")
According to the Union-intersection-principle:
$|A \cup B| = |A| + |B| - |A \cap B|$
which can also be written as:
$|A \cap B| = |A| + |B| - |A \cup B|$
Therefore, unions can be used to calculate intersection. Calculate $|DE \cup FR|$, $|DE \cup UK|$ and $|UK \cup FR|$, i.e.:
IntersectionCount =
hll_cardinality(grid_de)::int +
hll_cardinality(grid_fr)::int -
hll_cardinality(hll_union(grid_de, grid_fr)
First, prepare combination for different sets.
union_de_fr = pd.concat([grid_de, grid_fr])
union_de_uk = pd.concat([grid_de, grid_uk])
union_uk_fr = pd.concat([grid_uk, grid_fr])
Calculate union
grid_sel = {
"de-uk": union_de_uk,
"de-fr": union_de_fr,
"uk-fr": union_uk_fr
}
distinct_common = {}
for country_tuple, grid_sel in grid_sel.items():
cardinality = union_all_hll(
grid_sel["usercount_hll"].dropna())
distinct_common[country_tuple] = cardinality
print(
f"{distinct_common[country_tuple]} distinct total users "
f"who shared YFCC100M photos from either {country_tuple.split('-')[0]} "
f"or {country_tuple.split('-')[1]} (union)")
Calculate intersection
distinct_intersection = {}
for a, b in [("de", "uk"), ("de", "fr"), ("uk", "fr")]:
a_total = distinct_users_total[a]
b_total = distinct_users_total[b]
common_ref = f'{a}-{b}'
intersection_count = a_total + b_total - distinct_common[common_ref]
distinct_intersection[common_ref] = intersection_count
print(
f"{distinct_intersection[common_ref]} distinct users "
f"who shared YFCC100M photos from {a} and {b} (intersection)")
Finally, lets get the number of users who have shared pictures from all three countries, based on the formula for three sets:
$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$
which can also be written as:
$|A \cap B \cap C| = |A \cup B \cup C| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C|$
Calculate distinct users of all three countries:
union_de_fr_uk = pd.concat(
[grid_de, grid_fr, grid_uk])
cardinality = union_all_hll(
union_de_fr_uk["usercount_hll"].dropna())
union_count_all = cardinality
union_count_all
country_a = "de"
country_b = "uk"
country_c = "fr"
Calculate intersection
intersection_count_all = union_count_all - \
distinct_users_total[country_a] - \
distinct_users_total[country_b] - \
distinct_users_total[country_c] + \
distinct_intersection[f'{country_a}-{country_b}'] + \
distinct_intersection[f'{country_a}-{country_c}'] + \
distinct_intersection[f'{country_b}-{country_c}']
print(intersection_count_all)
Since we're going to visualize this with matplotlib-venn, we need the following variables:
from matplotlib_venn import venn3, venn3_circles
v = venn3(
subsets=(
500,
500,
100,
500,
100,
100,
10),
set_labels = ('A', 'B', 'C'))
v.get_label_by_id('100').set_text('Abc')
v.get_label_by_id('010').set_text('aBc')
v.get_label_by_id('001').set_text('abC')
v.get_label_by_id('110').set_text('ABc')
v.get_label_by_id('101').set_text('AbC')
v.get_label_by_id('011').set_text('aBC')
v.get_label_by_id('111').set_text('ABC')
plt.show()
We already have ABC
, the other values can be calulated:
ABC = intersection_count_all
ABc = distinct_intersection[f'{country_a}-{country_b}'] - ABC
aBC = distinct_intersection[f'{country_b}-{country_c}'] - ABC
AbC = distinct_intersection[f'{country_a}-{country_c}'] - ABC
Abc = distinct_users_total[country_a] - ABc - AbC + ABC
aBc = distinct_users_total[country_b] - ABc - aBC + ABC
abC = distinct_users_total[country_c] - aBC - AbC + ABC
Order of values handed over: Abc, aBc, ABc, abC, AbC, aBC, ABC
Define Function to plot Venn Diagram.
from typing import Tuple
def plot_venn(
subset_sizes: List[int],
colors: List[str],
names: List[str],
subset_sizes_raw: List[int] = None,
total_sizes: List[Tuple[int, int]] = None,
ax = None,
title: str = None):
"""Plot Venn Diagram"""
if not ax:
fig, ax = plt.subplots(1, 1, figsize=(5,5))
set_labels = (
'A', 'B', 'C')
v = venn3(
subsets=(
[subset_size for subset_size in subset_sizes]),
set_labels = set_labels,
ax=ax)
for ix, idx in enumerate(
['100', '010', '001']):
v.get_patch_by_id(
idx).set_color(colors[ix])
v.get_patch_by_id(
idx).set_alpha(0.8)
v.get_label_by_id(
set_labels[ix]).set_text(
names[ix])
if not total_sizes:
continue
raw_count = total_sizes[ix][0]
hll_count = total_sizes[ix][1]
difference = abs(raw_count-hll_count)
v.get_label_by_id(set_labels[ix]).set_text(
f'{names[ix]}, {hll_count},\n'
f'{difference/(raw_count/100):+.1f}%')
if subset_sizes_raw:
for ix, idx in enumerate(
['100', '010', None, '001']):
if not idx:
continue
dif_abs = subset_sizes[ix] - subset_sizes_raw[ix]
dif_perc = dif_abs / (subset_sizes_raw[ix] / 100)
v.get_label_by_id(idx).set_text(
f'{subset_sizes[ix]}\n{dif_perc:+.1f}%')
label_ids = [
'100', '010', '001',
'110', '101', '011',
'111', 'A', 'B', 'C']
for label_id in label_ids:
v.get_label_by_id(
label_id).set_fontsize(14)
# draw borders
c = venn3_circles(
subsets=(
[subset_size for subset_size in subset_sizes]),
linestyle='dashed',
lw=1,
ax=ax)
if title:
ax.title.set_text(title)
Plot Venn Diagram:
subset_sizes = [
Abc, aBc, ABc, abC, AbC, aBC, ABC]
colors = [
color_de, color_uk, color_fr]
names = [
'Germany', 'United Kingdom','France']
plot_venn(
subset_sizes=subset_sizes,
colors=colors,
names=names,
title="Common User Count")
Combine Map & Venn Diagram
# figure with subplot (1 row, 2 columns)
fig, ax = plt.subplots(1, 2, figsize=(10, 24))
plot_map(
grid=grid, sel_grids=sel_grids,
sel_colors=sel_colors, ax=ax[0])
plot_venn(
subset_sizes=subset_sizes,
colors=colors,
names=names,
ax=ax[1])
# store as png
fig.savefig(
OUTPUT / "hll_intersection_ukdefr.png", dpi=300, format='PNG',
bbox_inches='tight', pad_inches=1)
Save the Notebook, then execute the following cell to convert to HTML (archive format).
!jupyter nbconvert --to html \
--output-dir=./out/ ./02_hll_intro.ipynb \
--template=../nbconvert.tpl \
--ExtractOutputPreprocessor.enabled=False >&- 2>&-
rawdb
and hlldb
locally using Docker